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1. Introduction 

Vascular endothelium is considered as the largest endocrinal 

organ in the body which has been shown to have a role in 

homeostasis in the body by exerting various functions [1]. It 

is made up of simple squamous epithelial cells that line blood 

vessels, lymphatic vessels and the heart. The vascular 

endothelium has a total weight of about 1. 5kg. The 

endothelium has been recognized as a smart barrier and a key 

regulator of blood flow in micro and macro vascular 

circulation [2]. Endothelial function is very important, as it 

interacts with nearly every system in the body, and selectively 

supplies nutrients and growth factors to every organ. On the 

other hand, endothelium is also the recipient of active 

metabolites and delivers them back to the circulation. 

Previously, it was believed that, endothelium is an inactive 

barrier between blood and extravascular tissues. However, 

recent studies have shown that the vascular endothelium is an 

active paracrine, endocrine, and autocrine organ, responsible 
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Abstract 
Endothelium, the inner-most layers of blood vessels is an active monolayer of cells 
which has been evolved to become specialized barrier between blood and other 

structures of the vessel wall. Endothelial cell layer is known to communicate between 
blood and extravascular tissues and is actively involved in cardiovascular 
homeostasis. Intact endothelium regulates vascular tone, permeability and maintains 

non-inflammatory, anti-thrombotic surface. Through its ability to express pro- 
coagulants, anticoagulants, vasoconstrictors, vasodilators, cell adhesion molecules 
and cytokines, the endothelium has emerged as one of the pivotal regulators of 

haemostasis. Under normal conditions, endothelial cell sustains a vasodilatory, 
anticoagulant and fibrinolytic state in which coagulation, platelet adhesion as well as 
leukocyte activation and inflammation are suppressed by continuous release of nitric 
oxide (NO). Endothelium plays a major role in development of cardiovascular 

diseases (CVDs). Endothelial cell injuries and resultant endothelial dysfunction (ED) 
plays a key role in the deployment of CVDs. Therefore, the imbalance of endothelial 
function due to suppression of anticoagulant molecules like nitric oxide (NO), tissue 

factor pathway inhibition (TFPI), thrombomodulin etc, and over expression of pro- 
coagulant molecules like tissue actor (TF), endothelin-1, von Willebrand factor 
(vWF), plasminogen activator inhibitor (PAI)-1 secreted by endothelial surface is seen 

during stress. Several factors like infection, hyperglycaemia, hyperlipidaemia, 
malignancy, oxidative stress, and aging can interfere with endothelial function. It is 
widely believed, that ED plays a crucial role in the development of cardiovascular 

diseases. Also it has been reported to be involved in atherosclerosis, thrombosis, 
hypertension, diabetes and other vascular conditions. In this article we will 

specifically highlight and review the role of ED in different vascular conditions. 

https://doi.org/10.47062/1190.0202.04
mailto:gausalk@gmail.com
http://www.ste.org/
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for the regulation of vascular tone and the maintenance of 

vascular homeostasis. 

2. Physiological functions of endothelium 

When immediate surrounding tissues are at basal conditions, 

the endothelium maintains the vessel homeostasis which 

favors vessel dilation over vasoconstriction [3]. The 

endothelium being a dynamic reactive tissue, responds to 

various intrinsic and/or external stimuli (e.g. shear stress, 

temperature, transmural pressure, temperature, mental stress, 

neurohumoral responses, immune response and medications 

[2,4]. 

Under physiological condition, endothelial cells maintain 

basal perfusion which is determined by cardiac output, 

systemic and local vascular resistance. Endothelial 

metabolism, which is a key regulator of perfusion, is impaired 

during several diseases like infection, injury, aging, and 

inflammation, local, blood flow is the result of vascular 

relaxation and contraction that is balanced by endothelium 

derived vasodilatative and vasoconstrictive factors [5]. 

Among these factors, nitric oxide (NO) stands out as hub and 

target of many pathways and mechanisms [6]. It is important 

to understand the biochemical foundations of NO for 

endothelial functions. NO, a potent vasodilator, is released 

from the endothelium due to shear stress. This NO is released 

by endothelial nitric oxide synthase (eNOS) by utilizing L- 

arginine as substrate which leads to the production of 

intracellular cyclic GMP (cGMP) [7]. However, in an event 

when the NO-dependent vasodilation is compromised, the 

cytochrome-derived factors, natriuretic peptide [8], and 

prostacyclin [9] dependent vasodilator mechanism comes 

into action. During diseased state, there is impaired 

endothelial function and this results in the balance shift 

towards prevailing constrictive factors and/or down- 

regulation of vasodilatative factors. An important 

counterweight in the vascular balance is cyclooxygenase 

(COX). This mostly induces COX-1 which is endogenous, 

and may involve COX-2 if it is induced. The COXs have a key 

role in generating vasoconstrictive factors. 

The COX enzymes transform arachidonic acid into 

endoperoxides and further into thromboxane A2 (TXA2) [10], 

prostaglandins and prostacyclin [11]. Local presence of 

thrombin evokes inducible NO release. Release of serotonin 

and ADP from platelets in turn increases the NO synthesis and 

release in healthy endothelium to induce dilatation [12]. 

When vasodilatory function of endothelium is impaired, then 

the thrombus formation is mechanically promoted by 

vasoconstriction via TXA2 and by the direct effect of 

serotonin on smooth muscle cells [13]. 

3. Endothelial Dysfunction 

3.1 Nitric oxide – generation and significance 

In last 20 years, world has witnessed a gripping surge in the 

field of NO biology. NO is a free radical, an endogenous 

product that was first reported as endothelium-derived 

relaxing factor (EDRF) by Furchgott and Ignarro in 1986 

[14,15]. Nitric Oxide (NO) plays a significant role in several 

pathophysiological conditions such as atherosclerosis, 

hypertension, angiogenesis-associated disorders, nervous 

and immune systems, defense mechanisms against infectious 

diseases and tumors [16-25]. NO is mainly produced from l- 

arginine by eNOS [26-29]. L-arginine was first discovered 

and characterized as substrate for NOS for the production of 

NO [30-32]. Three distinct genes catalyze the production of 

NO from L-arginine: neuronal NOS (nNOS), inducible NOS 

(iNOS) and endothelial NOS (eNOS). However, 

endothelium-derived NO is a potent vasodilator [33,34]. In 

the vasculature, NO stimulates sGC to produce cGMP, 

decreases the intracellular concentration of calcium and 

causes relaxation of vascular smooth muscle. NO also 

mediates hypoxic augmentation of contraction in coronary 

arteries, a response which depends on sGC but independent of 

cGMP production (Figure 1) [35]. 

Traditionally, ED has been associated with pathological 

conditions that might have altered anticoagulant function, 

impaired anti-inflammatory properties of the endothelium, 

impaired modulation of vascular growth, and dysregulation 

of vascular remodeling. For instances, a plethora of studies 

has confirmed that the impairment of endothelium-dependent 

v a s o r e l a x a t i o n i s c a u s e d b y a l o s s o f N O 

bioactivity/availability in the vessel wall [4]. The loss of NO 

bioavailability is the salient feature of a dysfunctional 

endothelium, which in turn is the sentinel of systemic or focal 

vascular disease. 

Numerous studies have shown that most of the cardiovascular 

diseases were initiated from ED. The decline in NO 

bioavailability may be caused by decreased expression in 

endothelial cells [36], a lack of substrate or cofactors for 

eNOS [37], the presence of inhibitor of NOS [38], and 

alterations of cellular signaling and finally, accelerated NO 

degradation by reactive oxygen species (ROS) (Figure 1) 

[39]. Another aspect of ED is impaired endothelial barrier 

function. Depending on the mode of pathophysiological 

changes, barrier function may be impaired locally or 

systemically (Figure 2). Localized loss of the selective barrier 

function (manifested as edema), coupled with the 

mobilization of leukocytes, have been recognized as cardinal 

signs of inflammation [40]. From an immunological point of 

view, reaction to tissue injury or infection leads to cross-talk 

between leukocyte and endothelium. However, from the 

perspective of hemostasis and thrombosis, ED is 

characterized by activation of pro-inflammatory and pro- 

coagulant molecules, as well as the suppression of anti- 

inflammatory, and anti-coagulant molecules. The intact and 

normal functioning endothelial lining provides a stable 
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Figure 1: Ischemia-reperfusion induces generation of 
reactive oxygen species; its role in generation of nitric 
oxide, coronary vasoconstriction/dilation, causing 
decreased NO production, followed by impaired 
endothelium-dependent vasodilation. 

 
reservoir for blood as its luminal surface does not activate the 

coagulation cascade or promote leukocyte-platelet adhesion, 

and it also exhibits anticoagulant and fibrinolytic properties 

(Figure 2) [41]. Systemic endothelial dysfunction may lead to 

wide spread in flammation ,  vascular  leakage, 

thrombocytopenia and disseminated intravascular 

coagulation (DIC). Therefore, localized ED and leukocyte 

adhesion may lead to venous thrombosis. Other than altered 

endothelial barrier function, localized ED also leads to tissue 

factor (TF) induction and increased von Willebrand factor 

(vWF) release that shifts the homeostatic balance towards the 

pro-coagulant-pro-inflammatory phenotype (Figure 2) [42]. 

Intact endothelium releases pro-fibrinolytic molecules like 

tissue plasminogen activator (TPA) [43], whereas 

dysfunctional endothelium suppresses TPA release thereby 

impairing fibrinolytic function of the endothelium [44]. In 

contrast to venous endothelial cells and microvascular 

endothelial cells, arterial endothelial cells are surrounded by 

vascular smooth muscle layer and adventitial layer. Arterial 

endothelial cells physiologically experience high sheer stress 

and synthesize ample amount of NO that facilitate vascular 

relaxation. In the context of atherogenesis, dysfunction of 

endothelium is mainly characterized by, a loss of anatomical 

integrity of the intima, as described by the seminal 

Figure 2: Differential role of endothelial dysfunction 
cause and effects. 

 

 

 
“Response-to-Injury Hypothesis”. Endothelial cell injury 

and subsequent sub-endothelial matrix exposure lead to 

platelet adhesion and activation through sub-endothelial 

collagen layer [45]. The initiating event in the atherogenic 

process is some form of overt injury to the intimal endothelial 

lining, that is induced by noxious substances (e.g., oxidized 

cholest erol ,  cigarette smoke, hyper l ipidemia, 

hypercholesterolemia, hyperglycemia, etc.) or altered 

hemodynamic sheer stress (e.g., abnormal blood flow caused 

by hypertension) (Figure 2) [46]. In particular, mechanical 

tearing of local endothelial is seen as the inciting stimulus for 

platelets adhesion, activation and the localized release of 

platelet-derived growth factors (PDGFs). This might then 

elicit the migration, proliferation and phenotypic modulation 

of medial smooth muscle cells and thus generate a 

fibromuscular plaque [47]. It is of great importance to 

establish the sequential event that lead to the atherogenesis 

from endothelial injury. But, the direct link between 

endothelial injury and the genesis of atherosclerotic lesion is 

still unclear. However, the detailed morphologic examination 

in diet-induced fatty streak lesions in animal models failed to 

demonstrate unconcealed intimal injury or platelet adhesion. 

In this context, it is highly relevant that several molecules 

including high mobility group protein (HMGB-1) [48], heat 
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shock proteins (HSPs) [49] are released from injured 

endothelium, facilitate monocyte adhesion, a crucial step for 

plaque formation. 

3.2 Endothelial dysfunction in atherosclerosis 

ED of lesion-prone areas of the arterial vasculature lead to 

atherosclerotic plaque formation [50]. Sequential 

deterioration of arterial vasculature along with increased 

sheer stress contribute in lesion formation. ED is one of the 

early events that are responsible for the deterioration of 

arterial vasculature [51]. Recent insight into the cellular 

mechanisms involved in atherogenesis shows that deleterious 

modifications of endothelial physiology or metabolism is the 

initial event of vascular remodeling that represents a crucial 

step in the development of atherosclerosis and are also 

involved in development of plaque and the occurrence of 

atherosclerosis [2]. The sequential event including focal 

permeation, trapping and physicochemical modification of 

circulating lipoprotein particles in the sub-endothelial space 

construct an inflammatory lesion [52]. This initiates a 

coordinated cellular signaling, followed by complex 

pathogenic sequence and endothelial activation. Activated 

endothelial cells express several cell adhesion molecules, 

which facilitate selective recruitment of circulating 

monocytes from the blood, and invade the tunica intima, 

where they differentiate into macrophages. These 

macrophages also abnormally take up modified lipoproteins 

to become foam cells (the hallmark of early fatty streak 

lesions [53, 54]. The activated endothelium and macrophages 

release multiple chemokine, and growth factors which act on 

neighboring smooth muscle cells (or precursors cell) to 

induce their proliferation and synthesis of extracellular 

matrix components within the intimal compartment, thus 

generating a fibromuscular plaque [55, 56]. This progressive 

structural remodeling of developing lesions results in the 

formation of a fibrous cap, overlying a lipid-rich necrotic 

core that consists of oxidized lipoproteins, cholesterol 

crystals and cellular debris. This is also accompanied by 

varying degrees of matrix remodeling and calcification [57, 

58]. The lateral edges of these complicated plaques also 

contain a rich population of inflammatory cells i.e. activated 

macrophages, T-lymphocyte, dendritic cells, which secrete 

several cytokines and chemokines that further activate 

endothelial pro-inflammatory phenotype, and contribute to 

structural instability of the plaque through release of 

proteolytic enzymes (matrix metalloproteases) further 

leading to modification of sub-endothelial matrix 

components [59, 60]. Another aspect of atherogenesis is also 

governed by lipoproteins, mainly through low-density 

lipoproteins (LDL). This initial arterial remodeling through 

accumulation of lipids is known as fatty streak formation. The 

first changes in the arterial wall occur at the branch points of 

arteries, where adaptive intimal thickening occurs in 

response to normal hemodynamic stresses [61]. 

During the early stage of atherogenesis, LDL particles leave 

the blood and enter the arterial intima, composed of 

endothelial cells. Accumulation of fat droplets i.e LDL may 

also occur in the cytoplasm of vascular smooth muscle cells 

(VSMCs) [58]. LDL particles are then modified by enzymes 

and are oxidized into highly reactive pro-inflammatory 

molecule (oxidized LDL), that are recognized by pattern 

recognition receptors i.e. toll like receptors (TLRs) present in 

endothelial cells as well as pro-inflammatory macrophages 

[62]. Oxidized LDL incite the reaction of the innate 

inflammatory system within the intima and contributes in 

vascular remodeling. Inflammation begins when activated 

endothelial cells (through TLRs) express cell adhesion 

molecules and VSMCs secrete chemokines and 

chemoattractant, which together draw monocytes, 

lymphocytes, mast cells, and neutrophils into the arterial wall 

[63]. Once monocytes enter into the arterial wall through the 

intima, they become activated into macrophages. These 

macrophages take up lipids as multiple small inclusions and 

become transferred into foam cells [56]. The degree of lipid 

accumulation is critical for early-stage diagnosis of 

atherosclerosis. Atherosclerosis is believed to start when the 

lipid accumulation appears as confluent extracellular lipid 

pools and extracellular lipid cores with decreased 

cellularity [64]. ED is also responsible for VSMC 

proliferation and differentiation to myofibroblast. In an intact 

vessel, VSMCs never come in contact with plasma proteins 

and therefore devoid of growth factor present in plasma. In 

physiological condition VSMCs are always maintained in 

quiescent states. But through early inflammation and 

endothelial cell activation, VSMCs receive signal from dying 

cells or growth factors that modify VSMCs to myofibroblast 

(more proliferative counterpart). Altered VSMCs 

(myofibroblast) also secrete proteoglycans, collagen and 

elastic fibers into the sub-endothelial matrix [65]. This 

transformation of VSMCs further worsens the histological 

structure and leads to formation of thin-cap fibroatheroma 

formation [66]. Fibroatheroma can be of two different types 

depending on the content and stability of the plaque. Stability 

of the plaque also determines the fate of the fibroatheroma. 

Unstable fibroatheroma lead to thrombotic plaque formation 

whereas, stable fibroatheroma accumulate calcium, become 

stiff and eventually lead to occlusion [66, 67]. Possibility of 

ruptured plaques may lead to a catastrophic transition into 

atherosclerotic lesion plaque rupture, with luminal release of 

the highly thrombogenic contents [68, 69]. Else, some 

significant clinical sequelae can be seen from superficial 

intimal erosions, without any indication of plaque rupture 

[70]. Therefore, an acute transition appears leading to 

endothelial cell apoptosis, with localized endothelial 

denudation and thrombus formation leading to obstruction in 

regional blood flow in later stage [71, 72]. Whereas, the stable 

lesions, having thick fibrous cap and less lipid as well as 

inflammatory cell content, can gradually invade the lumen of 
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the vessel causing ischemic symptoms [73,74]. Ruptures of 

many thin fibrous caps remained clinically silent and are 

subsequently healed by forming fibrous tissue matrices of 

cells, collagen fibers, and extracellular space but may rupture 

again with thrombus formation of the necrotic core, 

triggering an atherothrombotic occlusion. These cyclic 

occurrences of rupture, thrombosis, and healing as many as 

four times at a single site in the arterial wall, results in 

multiple layers of healed tissue. In these conditions calcium 

deposition in the wall of the vessels forms micro-aggregates 

of thrombus, which in turn forms large nodules at later stage. 

Later on these plaques ruptures and exposes the nodules and 

becomes sites for thrombus formation [69]. Therefore, the 

increasing number of plaques itself might be adequate to form 

significant stenosis which may cause acute ischemic event 

[75]. 

Another area of great importance is the role of ROS 

producing enzymes in atherosclerosis. A number of enzyme 

systems can produce ROS in the vascular wall. Among them 

four have gained major attentions in recent years, namely, 

NADPH oxidase, xanthine oxidase, enzymes of the 

mitochondrial respiratory chain and especially a 

dysfunctional endothelial NO synthase (eNOS) [76]. Here in 

this section we will focus mainly to NADPH oxidase and 

eNOS. NADPH oxidases are major sources of ROS in the 

vasculature, producing superoxide from molecular oxygen 

using NADPH as the electron donor. The oxidases are multi- 

subunit enzyme complexes incorporating one of several 

homologs of the membrane-bound Nox catalytic subunits 

[77, 78]. In the vascular wall, Nox1 and Nox4 are expressed 

in vascular smooth muscle cells whereas Nox2 and Nox4 are 

predominantly found in endothelial cells [79-82]. It is 

reported that, although an activation of endothelial Nox2 in 

other cell types makes an indispensable contribution to 

progression of atherosclerosis, under physiological 

conditions, eNOS produces NO, which represents a key 

element in the vasoprotective function of the endothelium 

[83-86]. Under pathological conditions associated with 

oxidative stress, however, eNOS may become dysfunctional 

[76]. eNOS- derived NO can diffuse from endothelial cells 

into the underlying smooth muscle cells and induce 

vasodilation by stimulating NO-sensitive guanylyl cyclase. 

Endothelial NO can also diffuse into the blood and inhibit 

platelet aggregation and adhesion [76]. eNOS- derived NO 

also possesses multiple anti-atherosclerotic properties, 

including prevention of leucocyte adhesion, migration and 

vascular smooth muscle cell proliferation through the 

inhibition of oxidation of LDL [84-86]. Consistent with the 

anti-atherosclerotic role of eNOS-derived NO, genetic 

depletion of eNOS leads to accelerated and enhanced 

atherosclerotic in ApoE-KO mice [87,88]. Uncoupling of 

eNOS is a crucial mechanism contributing significantly to 

atherogenesis. It not only reduces NO production, but also 

potentiates the pre-existing oxidative stress [89]. It has been 

reported that, the damaging effects of superoxide is produced 

by uncoupled eNOS-derived NO in atherosclerosis [90]. 

Based on its multi-regulatory roles throughout this complex 

series of events, it is evident that ED constitutes a well- 

coordinated multicellular pathogenic sequence that lead to 

atherosclerosis. 

3.3 Endothelial dysfunction in hypertension 

Millions of people get affected by hypertension leading to 

worldwide cardiovascular morbidity and mortality and 

considered as a crucial factor for cardiovascular disease. 

Hypertension appears to have a complex association with 

ED, a phenotypical alteration of the vascular endothelium 

that precedes the development of adverse cardiovascular 

events. Endothelial cells along with the vascular smooth 

muscle cells of resistance vessels (arteries and arterioles) 

regulate hypertension as they continuously constrict and 

dilate according to the rhythm of cardiac cycle. In response to 

the blood flow (perfusion), the quiescent healthy 

endothelium continuously releases potent vasodilators, 

which have the potential to lower vascular resistance, thereby 

lowering the blood pressure [91, 92]. In normal condition, 

basal perfusion is determined by cardiac output, systemic and 

local resistance. Endothelial cell always maintains a 

vasodilatory rather than a vasoconstrictive phenotype in an 

intact healthy vessel. ED is a condition comprising not only of 

attenuated endothelium-dependent vasodilatation but also an 

augmented inflammation-induced endothelial activation that 

leads to vasoconstriction. ED contributes significantly in the 

development of hypertension, whereas hypertension also 

leads to endothelial dysfunction. In healthy endothelial 

tissues, a balance  between  endothelium‐derived   relaxing 

factors (EDRFs) and endothelium‐derived contracting 

factors (EDCFs) is maintained. Endothelium secretes a 

number of vasodilating factors including NO, PGI2, ET and 

adenosine. Generation of NO can activate the guanylate 

cyclase   (cGMP)   which   causes   vasodilation through 

relaxation of vascular smooth muscle cells [93]. Another 

vasodilatory factor is PGI2, secreted by the endothelium 

which inhibits platelet aggregation and proliferation of 

vascular smooth muscle cells [94]. Several vascular 

contracting factors including: angiotensin-II (Ang-II), 

endothelin-I (ET-I), dinucleotide uridine adenosine 

tetraphosphate (UP4A), COX derived TXA2 are also secreted 

by endothelial cells [95]. Endothelins (ETs) are potent 

vasoconstrictor molecules having a key role in vascular 

homeostasis. Although there are three types of ET, vascular 

ECs mainly produce only ET-1 which has a prominent role in 

vasoconstriction. Active ET molecule is generated by the 

actions of an ET converting enzyme (ECE) found on the 

endothelial cell membranes. 
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There are two types of ET-1 receptors: ET-A and ET-B. Under 

normal conditions the ET-A receptor is dominant in blood 

vessels [96]. ET-1 exerts vasoconstriction through activation 

of dihydropyridine channel (DHP channel) or long lasting 

Ca
++ 

channels (L-type) by binding to ET-A receptors on 

vascular smooth muscle cells. Smooth muscle cells express 

both ET-A and ET-B receptors. However, endothelial cells 

express only ET-B receptors which negatively regulate NO 

release. Another vasorelaxing factor adenosine, released 

from endothelial cells acts through purinergic receptor, helps 

maintain vascular perfusion [97]. Other than these factors 

several cytokines and chemokines also play important role in 

hypertension. Inflammatory cytokine induces generation of 

reactive oxygen species (ROS), one of the critical factors that 

link ED and hypertension [98]. It is well established that Ang- 

II induces NADPH oxidases (NOX). Recent finding indicates 

additional source of ROS generation. In small subcutaneous 

arteries, a significant portion of Ang-II induced ROS is 

produced by COX-2. In mouse aorta, the mitochondrial 

monoamine oxidase is another mediator of ROS generation 

and Ang-II or inflammation induced ED [99]. Therefore, 

mitochondrial monoamine oxidase-A and B are also induced 

due to ED in the vessels and generate a significant amount of 

H2O2, sufficient to quench endothelial NO. Apart from above, 

another mitochondrial ROS generating system i.e. p66Shc, 

also contribute to hypertension-induced ROS production. 

ROS production is also regulated by several intracellular 

signaling which further attenuate endothelial dysfunction and 

hypertension. 

3.4 Endothelial dysfunction in Heart Failure 

Heart failure (HF) is the most common cause of 

hospitalization in cardiovascular disease with a high 

mortality rate. Despite novel treatment options for patients 

suffering from HF, morbidity and mortality rates are still 

high. With the advancement of medical management, 

survival of acute coronary disease and cardiac ischemia has 

been improved. However, in myocardial infarction, 

prognosis is still poor, as HF with preserved ejection fraction 

(HFpEF) has a 65% mortality rate at 5 years. While the heart 

was an initial focus as the failing “pumping” organ in research 

and treatment, neurohumoral activation and subsequently the 

role of a failing endothelium was recognized and investigated 

in the recent years. Traditionally, HF was recognized as 

impairment of cardiac muscle activity, known as 

cardiomyopathy. It has been reported that, altered perfusion 

in cardiac arteries, due to atherogenesis also contributes to 

cardiac ischemia and cardiomyopathy. 

Reduction in myocardial perfusion due to impaired 

ventricular function are at least in part, a consequence of 

reduced endothelium dependent vasodilator capacity of 

coronary arteries. The prominent regulatory activity of the 

vascular endothelium in HF was discovered about two 

decades ago, and its assessment in different cardiovascular 

disorders, including HF, has been the focus of intense 

research [100]. On the other hand, declined peripheral 

vasodilation causes higher systemic and pulmonary vascular 

resistance, and together with stiffness of conductance 

arteries, leads to increased afterload. Elevated afterload 

further increases cardiac workload and therefore worsens the 

myocardial function. Altered endothelial metabolism further 

contributes in increasing cardiac afterload [13]. Indeed, 

various aspects of endothelial function are affected in heart 

failure, including vasomotor, hemostatic, antioxidant, and 

anti-inflammatory activities [85, 86]. Differences also exist 

in the pattern of ED depending on etiology, severity, and 

stability of HF in individual patients. ED also plays a central 

role in HF. Heart failure is also characterized by an altered 

redox state with overproduction of ROS. The increasing 

evidence suggest that the abnormal cardiac and vascular 

phenotypes characterizing the failing heart are caused in large 

part by imbalances between NO bioavailability and oxidative 

stress [87]. During initial stages of HF, inflammatory 

mediators from the myocardium, and altered local shear 

forces modulate gene expression, leukocyte infiltration, 

increased cytokine production, increased ROS generation 

and diminished NO bioavailability. Many diverse and often 

contradictory effects of NO or NO donors on myocardial 

function have been reported which, until relatively recently, 

have been difficult to make sense of. However, there is now 

emerging consensus that NO generally acts to fine tune and 

optimize cardiac pump function. Studies have shown that, 

suboptimal doses of NO exert small positive inotropic 

effects, which may serve to enhance basal cardiac function 

[101-104]. Augmented data suggests that NO derived both 

from eNOS from sarcolemmal caveolae and nNOS in the 

sarcoplasmic reticulum (SR) of the cardiac myocyte may 

modulate events like calcium influx through sarcolemmal L 

type channels and the release and re-uptake of calcium by SR 

[105,106]. At physiological doses, NO myocyte relaxation 

and diastolic function are observed [107-109]. The effects 

have been confirmed in normal human subjects studied 

invasively in the catheterization laboratory with 

intracoronary infusions of the NO donor, sodium 

nitroprusside, an agonist that releases NO from endothelial 

cells [110,111]. However, there is no direct evidence for 

deleterious role of NO in human heart failure. The initial 

speculative suggestions that excessive NO production by 

iNOS has acute negative ionotropic effects are almost 

certainly too simplistic. Treatment with NOS inhibitors had 

no effect on basal function either in myocardial strip 

preparations or isolated myocytes from end stage failing 

hearts [112,113]. The functional consequences of altered 

NOS expression and NO bioactivity in the failing human 

heart are only just beginning to be explored. 

Clinical studies showed significant up-regulation of plasma 

markers of endothelial activation (e.g. E-selectin) and 
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endothelial damage (e.g. vWF) in HF [44,85]. However, it is 

difficult to determine if ED is the cause or effect of the HF. 

Therefore, HF is regarded as thrombotic complication. As 

mentioned earlier, during atherogenesis, decreased lumen of 

cardiac arteries leads to reduced perfusion to the heart 

muscle. This phenomenon is coupled with increased sheer 

stress and impaired blood flow. This reduced perfusion either 

led to ischemia-reperfusion injury or coronary artery 

thrombosis [85]. Studies showed that ED is one of the 

principle mediators of ischemia-reperfusion injury and 

thrombosis. This explains the increased ED markers in 

coronary artery disease, HF and thrombosis. 

3.5 Endothelial dysfunction in stroke 

The global burden of neurological diseases including 

cerebro-vascular stroke has significantly increased, and 

development of new treatment modalities for cerebro- 

vascular diseases is an urgent need. Cerebrovascular stroke 

can be broadly subdivided into acute ischemic stroke and 

hemorrhagic stroke [114]. Acute ischemic stroke is among 

the leading causes of death and long-term disability. Cerebro- 

vascular stroke in small vessel has functional (lacunar stroke, 

cognitive impairment, gait and movement disorders) and 

structural (small subcortical infarct, lacunar infarct, lacunas, 

white matter lesions, micro bleeds) consequences. In the past 

few decades the immense development of neuro-radiological 

methods enabled better imaging of cerebral blood vessels. 

From the clinical point of view, it is very important to identify 

the location of vascular lesion. However, the treatment 

strategies do not depend on the location of vascular 

impairment. It is now well recognized that ED represents a 

systemic syndrome involving multiple vascular beds, 

including the cerebral vasculature [115]. Endothelial 

function is not uniform throughout the arterial system. It 

differs between organs and potentially also between different 

vascular beds within the same organ. Cerebral endothelium is 

probably one of the most specific types since it is the crucial 

element of the well-known blood-brain barrier (BBB). The 

BBB is a term used to describe the unique properties of the 

microvasculature of the central nervous system that protects 

the brain from harmful agents and pathogens [116]. CNS 

vessels are continuous non-fenestrated vessels, but also 

contain a series of additional properties that allow them to 

tightly regulate the movement of molecules, ions, and cells 

between the blood and the CNS. This heavily restricting 

barrier capacity allows BBB to tightly regulate CNS 

homeostasis, which is critical to allow for proper neuronal 

function, as well as protect the CNS from toxins, pathogens, 

inflammation, injury, and disease. The cell-to-cell interaction 

with astrocytes, microglia and neurons mainly play an 

important role for maintenance of BBB controlled by 

endothelial cells and pericytes [117]. 

However, the integrity of BBB is primarily disrupted due to 

decrease in endothelial cell –cell junction proteins and the 

detachment of pericytes from the endothelial membrane in 

homorganic condition [118]. Cerebral autoregulation 

maintains constant blood flow (CBF) through the brain in 

spite of changing mean arterial pressure. Autoregulation of 

cerebral blood flow consists of mechano-and chemo- 

regulation. The serum level of carbon dioxide (CO2) is 

directly controlled by the chemo-regulation independent of 

changes in mean arterial pressure [119,120]. However, 

mechano-regulation depends on transmural pressure gradient 

and endothelial vasodilatation. 

As mentioned in previous section, strokes could be divided in 

two types: ischemic and hemorrhagic. In both, nitric oxide 

(NO) plays an important role where inducible NOS (iNOS) 

and neuronal NOS (nNOS) plays the role of neurotoxic agent 

and endothelial NOS (eNOS) plays the neuroprotective role 

in acute ischemic stroke [121]. NO thus produced by iNOS 

and nNOS exerts its neurotoxic effects by producing nitrites 

and releasing free radicals which eventually damage the 

mitochondria and genetic materials [122-125]. On the other 

hand, NO produced by eNOS exerts the neuroprotective 

effects through the regulation of vascular bed and peripheral 

nerve tissue [126,127]. It has been reported that, the 

concentration and distribution of NO in brain tissue is altered 

significantly after cerebral ischemia [121]. The 

neuroprotective role of NO in middle cerebral artery 

occlusion (MCAO) model shows that NO mediates the 

neurovascular protection through the inhibition of serine 

racemases [128]. The integrity of BBB could also be achieved 

by regulating NO/caveolin1/MMP pathway, while reduction 

in mRNA and protein level of iNOS and nNOS would also 

provide neuroprotection [129,130]. The neurotoxic effects of 

NO in MCAO exhibits its role by increasing infarct size and 

cerebral vascular injury [131] and activation of iNOS induced 

cell apoptosis in a rat model of cerebral ischemia-reperfusion 

injury [132,133]. NO and peroxides cause microvascular 

dysfunction and poor prognosis [134]. Hence, NO plays a 

dual role in hemorrhagic and acute ischemic stroke. 

4. Role of Inflammasomes in endothelial dysfunction 

Ample research has showed reactive species-mediated 

activation of inflammasomes (NLRP3), in sterile 

inflammatory conditions. Inflammasomes are multi-protein 

platforms, with a molecular mass of at least 700 kD [135] 

controlling the activation of caspase-1 and the cleavage of 

pro-IL-1β, enabling the release of the active mature 17 kD 

cytokine [136,137]. Caspases are responsible for crucial 

aspects of inflammation and cell death and can be broadly 

divided into two classes based on their substrate specificity 

pro-apoptotic/inflammatory (Figure 3) [138]. Inflammasome 

complexes assemble upon activation by an appropriate 

stimulus, leading to the multimerization of the adaptor 

molecule Adaptor Protein apoptosis-associated speck-like 

protein containing CARD (ASC) (Figure III). In 



Kushal Chakraborty et al., 106 
 

 
 

 

Figure 3: Role of reactive oxygen species on the activation 
of inflammasome, activation caspase-I, leading to leading 
to inflammation/apoptosis. 

 
ischemia/reperfusion (I/R), release of ATP and/or 

mitochondrial DNA following mitochondrial permeability 

transition pore opening and/or rupture of mitochondrial 

membranes serve as strong danger signals that initiate sterile 

inflammation [139,140]. Reactive species production by 

mitochondria also induces detachment of thioredoxin from 

the potent NLRP3 activator TXNIP in microvascular 

endothelial cells [141,142]. Postischemic RS production, 

NLRP3 activation, TXNIP/NLRP3 signaling reduce 

postischemic cytokine production, neutrophil infiltration, 

dysfunctional endothelial barrier and cell death [143,144]. In 

postischemic tissues, NLRP3 forms an inflammasome 

composed of apoptosis-associated Spec-like protein 

containing a caspase activation and recruitment (ASC), 

which recruits and activates caspase-1(Figure 3) [145]. \ 

Mounting evidence indicates that inflammation and immune 

responses play an important role in the overall pathogenesis 

of ischemic stroke by activating various cascades of damage. 

Several reports show that ischemic stroke increases the 

expression and activation of the NLRP3 inflammasome in the 

neurons and glial cells [146-148]. Several mechanisms 

trigger NLRP3 inflammasome during cerebral ischemia, 

acidosis, increased ROS formation, cathepsin release, 

oxidized mitochondrial DNA, intracellular Ca 
2 + 

accumulation, cell swelling, and protein kinase R (PKR) 

activation [149-155]. Recent studies have indicated that NO 

enhances the removal of the dysfunctional mitochondria and 

prevents assembly of the inflammasome, which leads to 

downregulation of the NLRP3 inflammasome and NO in 

myeloid cells of the mice and humans; inhibits the activation 

of the NLRP3 inflammasome; and consequently prevents 

ASC pyroptosome formation, caspase-1 activation and IL-1β 

secretion (Figure 3) [156-158]. In conclusion, physiological 

functions of NO encompass reduction of inflammatory 

responses and hence plays an important role in 

neuroprotection after stroke. 

5. Endothelial dysfunction – role in preeclampsia 

Preeclampsia, which is a hypertensive pregnancy disorder 

affects around 1-5% pregnant women and is characterized by 

hypertension, proteinuria, maternal organ dysfunction and 

uteroplacental dysfunction (Figure 4) [159,160]. 

Preeclampsia is a major cause of maternal and fetal morbidity 

and mortality, affects the health of the mother in the years 

directly following preeclampsia [161]. Women with a history 

of preeclampsia have a 2.2 times higher risk of developing 

ischemic heart disease [161]. In preeclampsia, ED is 

characterized by oxidative stress, angiogenic and  

vasodilatory imbalance which could be paired with 

endoplasmic reticulum  stress and endothelial  cell apoptosis 

[162] and reactive oxygen species raises the risk for CVD for 

example hypertension, hypercholesterolemia and diabetes 

[163,164]. In case of endothelial dysfunction, reactive 

oxygen species stimulate inflammation via the NF-kB 

pathway and activation of the macrophages in the plaque 

[164]. Reactive oxygen species induces the activation of 

proteases and matrix metalloproteinases (MMP), degrades 

basement membrane  which  in turn get  involved  in plaque 
 

Figure 4: Role of endothelial dysfunction and 
hypertension in maternal and fetal morbidity during 
preeclampsia. 
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erosion [165,166]. Nitric oxide concentration has been 

shown to have variable results ranging from decreased or 

increased or even unchanged levels in terms of NO 

metabolites in preeclampsia, [167-172]. Although the whole 

body NO may not change in PE, a reduction in endothelial NO 

signaling, vascular relaxation in PE and NO bioavailability 

could be expected [173]. Attempts to assess eNOS activity in 

PE led to the conclusion that it is unknown whether eNOS 

deficiency plays a casual role there. In the murine model, 

chronic NOS inhibition reversed systemic vasodilation and 

glomerular hyperfiltration in pregnancy, which suggested its 

role for endothelial damage and decreased NO in the 

pathogenesis of preeclampsia (Figure 4) [174]. Data from PE 

women is quite limited and without consensus on eNOS 

expression, as higher, lower and unchanged levels of mRNA 

or enzyme have been reported [175,176]. 

6. Conclusion 

In this review we have tried to focus on the role of ED in 

CVDs and cardiovascular morbidity where sterile 

inflammatory responses pose a credible threat, owing to 

considerable attention. 

Patients with chronic inflammatory and / or sterile 

inflammatory diseases are at high risk for cardiovascular 

morbidity and mortality. In many inflammatory diseases, this 

heightened risk of CVDs are reflected in early ED, even in the 

absence of any other detectable diseases. Several others 

mechanisms i.e. auto-antibodies, oxidative stress and 

interactions with traditional risk factors like dyslipidemia and 

insulin resistance might also be involved. Current literature 

search provides an insight into the cross-talks between 

oxidative stress, ED and inflammasomes. Therefore, further 

research is required to delineate the importance of these 

processes. The current approaches to diminish cardiovascular 

morbidity and mortality are focused on controlling traditional 

modifiable cardiovascular risk factors and reduction of 

disease risk. Therefore, the precise mechanisms leading to 

development of CVDs due to inflammation/or sterile 

inflammation need to be explored. These studies might help 

to identify unique therapeutic targets to combat these 

diseases. 

The endothelium therefore represents an integrator of 

vascular risk and the study of its dysfunction may help 

elucidate mechanisms driving accelerated CVDs in future 

which could help to develop therapeutic targets for control of 

CVDs. 
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