VASCULAR DISEASES AND ROLE OF NITRIC OXIDE

Kushal Chakraborty¹, Md. Iqbal Alam², Gausal Azam Khan³*

¹Department of Physiology, CMNHS, Fiji School of Medicine, Fiji National University, Suva, Fiji Islands
²Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi, India

Received on: 28.05.2020 Revised on: 11.06.2020 Accepted on: 25.06.2020

Abstract
Endothelium, the inner-most layers of blood vessels is an active monolayer of cells which has been evolved to become specialized barrier between blood and other structures of the vessel wall. Endothelial cell layer is known to communicate between blood and extravascular tissues and is actively involved in cardiovascular homeostasis. Intact endothelium regulates vascular tone, permeability and maintains non-inflammatory, anti-thrombotic surface. Through its ability to express pro-coagulants, anticoagulants, vasoconstrictors, vasodilators, cell adhesion molecules and cytokines, the endothelium has emerged as one of the pivotal regulators of haemostasis. Under normal conditions, endothelial cell sustains a vasodilatory, anticoagulant and fibrinolytic state in which coagulation, platelet adhesion as well as leukocyte activation and inflammation are suppressed by continuous release of nitric oxide (NO). Endothelium plays a major role in development of cardiovascular diseases (CVDs). Endothelial cell injuries and resultant endothelial dysfunction (ED) plays a key role in the deployment of CVDs. Therefore, the imbalance of endothelial function due to suppression of anticoagulant molecules like nitric oxide (NO), tissue factor pathway inhibition (TFPI), thrombomodulin etc. and over expression of pro-coagulant molecules like tissue factor (TF), endothelin-1, von Willebrand factor (vWF), plasminogen activator inhibitor (PAI)-1 secreted by endothelial surface is seen during stress. Several factors like infection, hyperglycaemia, hyperlipidaemia, malignancy, oxidative stress, and aging can interfere with endothelial function. It is widely believed, that ED plays a crucial role in the development of cardiovascular diseases. Also it has been reported to be involved in atherosclerosis, thrombosis, hypertension, diabetes and other vascular conditions. In this article we will specifically highlight and review the role of ED in different vascular conditions.

Keywords
Nitric Oxide, CVDs, hypertension, thrombosis, inflammation, stress..

1. Introduction
Vascular endothelium is considered as the largest endocrinial organ in the body which has been shown to have a role in homeostasis in the body by exerting various functions [1]. It is made up of simple squamous epithelial cells that line blood vessels, lymphatic vessels and the heart. The vascular endothelium has a total weight of about 1.5kg. The endothelium has been recognized as a smart barrier and a key regulator of blood flow in micro and macro vascular circulation [2]. Endothelial function is very important, as it interacts with nearly every system in the body, and selectively supplies nutrients and growth factors to every organ. On the other hand, endothelium is also the recipient of active metabolites and delivers them back to the circulation. Previously, it was believed that, endothelium is an inactive barrier between blood and extravascular tissues. However, recent studies have shown that the vascular endothelium is an active paracrine, endocrine, and autocrine organ, responsible
for the regulation of vascular tone and the maintenance of vascular homeostasis.

2. Physiological functions of endothelium

When immediate surrounding tissues are at basal conditions, the endothelium maintains the vessel homeostasis which favors vessel dilation over constrictor [3]. The endothelium being a dynamic reactive tissue, responds to various intrinsic and/or external stimuli (e.g. shear stress, temperature, transmural pressure, temperature, mental stress, neurohumoral responses, immune response and medications [2,4].

Under physiological condition, endothelial cells maintain basal perfusion which is determined by cardiac output, systemic and local vascular resistance. Endothelial metabolism, which is a key regulator of perfusion, is impaired during several diseases like infection, injury, aging, and inflammation, local, blood flow is the result of vascular relaxation and contraction that is balanced by endothelium derived vasodilative and vasoconstrictive factors [5]. Among these factors, nitric oxide (NO) stands out as hub and target of many pathways and mechanisms [6]. It is important to understand the biochemical foundations of NO for endothelial functions. NO, a potent vasodilator, is released from the endothelium due to shear stress. This NO is released by endothelial nitric oxide synthase (eNOS) by utilizing L-arginine as substrate which leads to the production of intracellular cyclic GMP (cGMP) [7]. However, in an event when the NO-dependent vasodilation is compromised, the cytochrome-derived factors, natriuretic peptide [8], and prostacyclin [9] dependent vasodilator mechanism comes into action. During diseased state, there is impaired endothelial function and this results in the balance shift towards prevailing constrictive factors and/or down-regulation of vasodilatative factors. An important counterweight in the vascular balance is cyclooxygenase (COX). This mostly induces COX-1 which is endogenous, and may involve COX-2 if it is induced. The COXs have a key role in generating vasoconstrictive factors.

The COX enzymes transform arachidonic acid into endoperoxides and further into thromboxane A$_2$ (TXA$_2$) [10], prostaglandins and prostacyclin [11]. Local presence of thrombin evokes inducible NO release. Release of serotonin and ADP from platelets in turn increases the NO synthesis and release in healthy endothelium to induce dilatation [12]. When vasodilatory function of endothelium is impaired, then the thrombus formation is mechanically promoted by vasoconstriction via TXA$_2$ and by the direct effect of serotonin on smooth muscle cells [13].

3. Endothelial Dysfunction

3.1 Nitric oxide – generation and significance

In last 20 years, world has witnessed a gripping surge in the field of NO biology. NO is a free radical, an endogenous product that was first reported as endothelium-derived relaxing factor (EDRF) by Furchgott and Ignarro in 1986 [14,15]. Nitric Oxide (NO) plays a significant role in several pathophysiological conditions such as atherosclerosis, hypertension, angiogenesis-associated disorders, nervous and immune systems, defense mechanisms against infectious diseases and tumors [16-25]. NO is mainly produced from L-arginine by eNOS [26-29]. L-arginine was first discovered and characterized as substrate for NOS for the production of NO [30-32]. Three distinct genes catalyze the production of NO from L-arginine: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). However, endothelium-derived NO is a potent vasodilator [33,34]. In the vasculature, NO stimulates sGC to produce cGMP, decreases the intracellular concentration of calcium and causes relaxation of vascular smooth muscle. NO also mediates hypoxic augmentation of contraction in coronary arteries, a response which depends on sGC but independent of cGMP production (Figure 1) [35].

Traditionally, ED has been associated with pathological conditions that might have altered anticoagulant function, impaired anti-inflammatory properties of the endothelium, impaired modulation of vascular growth, and dysregulation of vascular remodeling. For instance, a plethora of studies has confirmed that the impairment of endothelium-dependent vasorelaxation is caused by a loss of NO bioavailability/availability in the vessel wall [4]. The loss of NO bioavailability is the salient feature of a dysfunctional endothelium, which in turn is the sentinel of systemic or focal vascular disease.

Numerous studies have shown that most of the cardiovascular diseases were initiated from ED. The decline in NO bioavailability may be caused by decreased expression in endothelial cells [36], a lack of substrate or cofactors for eNOS [37], the presence of inhibitor of NOS [38], and alterations of cellular signaling and finally, accelerated NO degradation by reactive oxygen species (ROS) (Figure 1) [39]. Another aspect of ED is impaired endothelial barrier function. Depending on the mode of pathophysiological changes, barrier function may be impaired locally or systemically (Figure 2). Localized loss of the selective barrier function (manifested as edema), coupled with the mobilization of leukocytes, have been recognized as cardinal signs of inflammation [40]. From an immunological point of view, reaction to tissue injury or infection leads to cross-talk between leukocyte and endothelium. However, from the perspective of hemostasis and thrombosis, ED is characterized by activation of pro-inflammatory and pro-coagulant molecules, as well as the suppression of anti-inflammatory, and anti-coagulant molecules. The intact and normal functioning endothelial lining provides a stable
Figure 1: Ischemia-reperfusion induces generation of reactive oxygen species; its role in generation of nitric oxide, coronary vasoconstriction/dilation, causing decreased NO production, followed by impaired endothelium-dependent vasodilation.

reservoir for blood as its luminal surface does not activate the coagulation cascade or promote leukocyte-platelet adhesion, and it also exhibits anticoagulant and fibrinolytic properties (Figure 2) [41]. Systemic endothelial dysfunction may lead to wide spread inflammation, vascular leakage, thrombocytopenia and disseminated intravascular coagulation (DIC). Therefore, localized ED and leukocyte adhesion may lead to venous thrombosis. Other than altered endothelial barrier function, localized ED also leads to tissue factor (TF) induction and increased von Willebrand factor (vWF) release that shifts the homeostatic balance towards the pro-coagulant-pro-inflammatory phenotype (Figure 2) [42]. Intact endothelium releases pro-fibrinolytic molecules like tissue plasminogen activator (TPA) [43], whereas dysfunctional endothelium suppresses TPA release thereby impairing fibrinolytic function of the endothelium [44]. In contrast to venous endothelial cells and microvascular endothelial cells, arterial endothelial cells are surrounded by vascular smooth muscle layer and adventitial layer. Arterial endothelial cells physiologically experience high shear stress and synthesize ample amount of NO that facilitate vascular relaxation. In the context of atherogenesis, dysfunction of endothelium is mainly characterized by, a loss of anatomical integrity of the intima, as described by the seminal

“Response-to-Injury Hypothesis”. Endothelial cell injury and subsequent sub-endothelial matrix exposure lead to platelet adhesion and activation through sub-endothelial collagen layer [45]. The initiating event in the atherogenic process is some form of overt injury to the intimal endothelial lining, that is induced by noxious substances (e.g., oxidized cholesterol, cigarette smoke, hyperlipidemia, hypercholesterolemia, hyperglycemia, etc.) or altered hemodynamic shear stress (e.g., abnormal blood flow caused by hypertension) (Figure 2) [46]. In particular, mechanical tearing of local endothelial is seen as the inciting stimulus for platelets adhesion, activation and the localized release of platelet-derived growth factors (PDGFs). This might then elicit the migration, proliferation and phenotypic modulation of medial smooth muscle cells and thus generate a fibromuscular plaque [47]. It is of great importance to establish the sequential event that lead to the atherogenesis from endothelial injury. But, the direct link between endothelial injury and the genesis of atherosclerotic lesion is still unclear. However, the detailed morphologic examination in diet-induced fatty streak lesions in animal models failed to demonstrate unconcealed intimal injury or platelet adhesion. In this context, it is highly relevant that several molecules including high mobility group protein (HMGB-1) [48], heat
shock proteins (HSPs) [49] are released from injured endothelium, facilitate monocyte adhesion, a crucial step for plaque formation.

3.2 Endothelial dysfunction in atherosclerosis

ED of lesion-prone areas of the arterial vasculature lead to atherosclerotic plaque formation [50]. Sequential deterioration of arterial vasculature along with increased shear stress contribute in lesion formation. ED is one of the early events that are responsible for the deterioration of arterial vasculature [51]. Recent insight into the cellular mechanisms involved in atherogenesis shows that deleterious modifications of endothelial physiology or metabolism is the initial event of vascular remodeling that represents a crucial step in the development of atherosclerosis and are also involved in development of plaque and the occurrence of atherosclerosis [2]. The sequential event including focal permeation, trapping and physicochemical modification of circulating lipoprotein particles in the sub-endothelial space construct an inflammatory lesion [52]. This initiates a coordinated cellular signaling, followed by complex pathogenic sequence and endothelial activation. Activated endothelial cells express several cell adhesion molecules, which facilitate selective recruitment of circulating monocytes from the blood, and invade the tunica intima, where they differentiate into macrophages. These macrophages also abnormally take up modified lipoproteins to become foam cells (the hallmark of early fatty streak lesions [53, 54]. The activated endothelium and macrophages release multiple chemokine, and growth factors which act on neighboring smooth muscle cells (or precursors cell) to induce their proliferation and synthesis of extracellular matrix components within the intimal compartment, thus generating a fibromuscular plaque [55, 56]. This progressive structural remodeling of developing lesions results in the formation of a fibrous cap, overlying a lipid-rich necrotic core that consists of oxidized lipoproteins, cholesterol crystals and cellular debris. This is also accompanied by varying degrees of matrix remodeling and calcification [57, 58]. The lateral edges of these complicated plaques also contain a rich population of inflammatory cells i.e. activated macrophages, T-lymphocyte, dendritic cells, which secrete several cytokines and chemokines that further activate endothelial pro-inflammatory phenotype, and contribute to structural instability of the plaque through release of proteolytic enzymes (matrix metalloproteases) further leading to modification of sub-endothelial matrix components [59, 60]. Another aspect of atherogenesis is also governed by lipoproteins, mainly through low-density lipoproteins (LDL). This initial arterial remodeling through accumulation of lipids is known as fatty streak formation. The first changes in the arterial wall occur at the branch points of arteries, where adaptive intimal thickening occurs in response to normal hemodynamic stresses [61].

During the early stage of atherogenesis, LDL particles leave the blood and enter the arterial intima, composed of endothelial cells. Accumulation of fat droplets i.e LDL may also occur in the cytoplasm of vascular smooth muscle cells (VSMCs) [58]. LDL particles are then modified by enzymes and are oxidized into highly reactive pro-inflammatory molecule (oxidized LDL), that are recognized by pattern recognition receptors i.e. toll like receptors (TLRs) present in endothelial cells as well as pro-inflammatory macrophages [62]. Oxidized LDL incite the reaction of the innate inflammatory system within the intima and contributes in vascular remodeling. Inflammation begins when activated endothelial cells (through TLRs) express cell adhesion molecules and VSMCs secrete chemokines and chemoattractant, which together draw monocytes, lymphocytes, mast cells, and neutrophils into the arterial wall [63]. Once monocytes enter into the arterial wall through the intima, they become activated into macrophages. These macrophages take up lipids as multiple small inclusions and become transferred into foam cells [56]. The degree of lipid accumulation is critical for early-stage diagnosis of atherosclerosis. Atherosclerosis is believed to start when the lipid accumulation appears as confluent extracellular lipid pools and extracellular lipid cores with decreased cellularity [64]. ED is also responsible for VSMC proliferation and differentiation to myofibroblast. In an intact vessel, VSMCs never come in contact with plasma proteins and therefore devoid of growth factor present in plasma. In physiological condition VSMCs are always maintained in quiescent states. But through early inflammation and endothelial cell activation, VSMCs receive signal from dying cells or growth factors that modify VSMCs to myofibroblast (more proliferative counterpart). Altered VSMCs (myofibroblast) also secrete proteoglycans, collagen and elastic fibers into the sub-endothelial matrix [65]. This transformation of VSMCs further worsens the histological structure and leads to formation of thin-cap fibroatheroma formation [66]. Fibroatheroma can be of two different types depending on the content and stability of the plaque. Stability of the plaque also determines the fate of the fibroatheroma. Unstable fibroatheroma lead to thrombotic plaque formation whereas, stable fibroatheroma accumulate calcium, become stiff and eventually lead to occlusion [66, 67]. Possibility of ruptured plaques may lead to a catastrophic transition into atherosclerotic lesion plaque rupture, with luminal release of the highly thrombogenic contents [68, 69]. Else, some significant clinical sequelae can be seen from superficial intimal erosions, without any indication of plaque rupture [70]. Therefore, an acute transition appears leading to endothelial cell apoptosis, with localized endothelial denudation and thrombus formation leading to obstruction in regional blood flow in later stage [71, 72]. Whereas, the stable lesions, having thick fibrous cap and less lipid as well as inflammatory cell content, can gradually invade the lumen of
the vessel causing ischemic symptoms [73,74]. Ruptures of many thin fibrous caps remained clinically silent and are subsequently healed by forming fibrous tissue matrices of cells, collagen fibers, and extracellular space but may rupture again with thrombus formation of the necrotic core, triggering an atherothrombotic occlusion. These cyclic occurrences of rupture, thrombosis, and healing as many as four times at a single site in the arterial wall, results in multiple layers of healed tissue. In these conditions calcium deposition in the wall of the vessels forms micro-aggregates of thrombus, which in turn forms large nodules at later stage. Later on these plaques ruptures and exposes the nodules and becomes sites for thrombus formation [69]. Therefore, the increasing number of plaques itself might be adequate to form significant stenosis which may cause acute ischemic event [75].

Another area of great importance is the role of ROS producing enzymes in atherosclerosis. A number of enzyme systems can produce ROS in the vascular wall. Among them four have gained major attentions in recent years, namely, NADPH oxidase, xanthine oxidase, enzymes of the mitochondrial respiratory chain and especially a dysfunctional endothelial NO synthase (eNOS) [76]. Here in this section we will focus mainly to NADPH oxidase and eNOS. NADPH oxidases are major sources of ROS in the vasculature, producing superoxide from molecular oxygen using NADPH as the electron donor. The oxidases are multi-subunit enzyme complexes incorporating one of several homologs of the membrane-bound Nox catalytic subunits [77, 78]. In the vascular wall, Nox1 and Nox4 are expressed in vascular smooth muscle cells whereas Nox2 and Nox4 are predominantly found in endothelial cells [79-82]. It is reported that, although an activation of endothelial Nox2 in other cell types makes an indispensable contribution to progression of atherosclerosis, under physiological conditions, eNOS produces NO, which represents a key element in the vasoprotective function of the endothelium [83-86]. Under pathological conditions associated with oxidative stress, however, eNOS may become dysfunctional [76]. eNOS- derived NO can diffuse from endothelial cells into the underlying smooth muscle cells and induce vasodilation by stimulating NO-sensitive guanylyl cyclase. Endothelial NO can also diffuse into the blood and inhibit platelet aggregation and adhesion [76]. eNOS- derived NO also possesses multiple anti-atherosclerotic properties, including prevention of leucocyte adhesion, migration and vascular smooth muscle cell proliferation through the inhibition of oxidation of LDL [84-86]. Consistent with the anti-atherosclerotic role of eNOS-derived NO, genetic depletion of eNOS leads to accelerated and enhanced atherosclerotic in ApoE-KO mice [87,88]. Uncoupling of eNOS is a crucial mechanism contributing significantly to atherogenesis. It not only reduces NO production, but also potentiates the pre-existing oxidative stress [89]. It has been reported that, the damaging effects of superoxide is produced by uncoupled eNOS-derived NO in atherosclerosis [90].

Based on its multi-regulatory roles throughout this complex series of events, it is evident that ED constitutes a well-coordinated multicellular pathogenic sequence that lead to atherosclerosis.

33 Endothelial dysfunction in hypertension

Millions of people get affected by hypertension leading to worldwide cardiovascular morbidity and mortality and considered as a crucial factor for cardiovascular disease. Hypertension appears to have a complex association with ED, a phenotypical alteration of the vascular endothelium that precedes the development of adverse cardiovascular events. Endothelial cells along with the vascular smooth muscle cells of resistance vessels (arteries and arterioles) regulate hypertension as they continuously constrict and dilate according to the rhythm of cardiac cycle. In response to the blood flow (perfusion), the quiescent healthy endothelium continuously releases potent vasodilators, which have the potential to lower vascular resistance, thereby lowering the blood pressure [91, 92]. In normal condition, basal perfusion is determined by cardiac output, systemic and local resistance. Endothelial cell always maintains a vasodilatory rather than a vasoconstrictive phenotype in an intact healthy vessel. ED is a condition comprising not only of attenuated endothelium-dependent vasodilatation but also an augmented inflammation-induced endothelial activation that leads to vasoconstriction. ED contributes significantly in the development of hypertension, whereas hypertension also leads to endothelial dysfunction. In healthy endothelial tissues, a balance between endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs) is maintained. Endothelium secretes a number of vasodilating factors including NO, PGI2, ET and adenosine. Generation of NO can activate the guanylate cyclase (cGMP) which causes vasodilation through relaxation of vascular smooth muscle cells [93]. Another vasodilatory factor is PGI2, secreted by the endothelium which inhibits platelet aggregation and proliferation of vascular smooth muscle cells [94]. Several vascular contracting factors including: angiotensin-II (Ang-II), endothelin-1 (ET-1), dinucleotide uridine adenosine tetraphosphate (UP4A), COX derived TXA2, are also secreted by endothelial cells [95]. Endothelins (ETs) are potent vasoconstrictor molecules having a key role in vascular homeostasis. Although there are three types of ET, vascular ECs mainly produce only ET-1 which has a prominent role in vasoconstriction. Active ET molecule is generated by the actions of an ET converting enzyme (ECE) found on the endothelial cell membranes.
There are two types of ET-1 receptors: ET-A and ET-B. Under normal conditions the ET-A receptor is dominant in blood vessels [96]. ET-1 exerts vasoconstriction through activation of dihydropyridine channel (DHP channel) or long lasting Ca” channels (L-type) by binding to ET-A receptors on vascular smooth muscle cells. Smooth muscle cells express both ET-A and ET-B receptors. However, endothelial cells express only ET-B receptors which negatively regulate NO release. Another vasorelaxing factor adenosine, released from endothelial cells acts through purinergic receptor, helps maintain vascular perfusion [97]. Other than these factors several cytokines and chemokines also play important role in hypertension. Inflammatory cytokine induces generation of reactive oxygen species (ROS), one of the critical factors that link ED and hypertension [98]. It is well established that Ang-II induces NADPH oxidases (NOX). Recent finding indicates additional source of ROS generation. In small subcutaneous arteries, a significant portion of Ang-II induced ROS is produced by COX-2. In mouse aorta, the mitochondrial monoamine oxidase is another mediator of ROS generation and Ang-II or inflammation induced ED [99]. Therefore, mitochondrial monoamine oxidase-A and B are also induced due to ED in the vessels and generate a significant amount of H2O2, sufficient to quench endothelial NO. Apart from above, another mitochondrial ROS generating system i.e. p66Shc, also contribute to hypertension-induced ROS production. ROS production is also regulated by several intracellular signaling which further attenuate endothelial dysfunction and hypertension.

3.4 Endothelial dysfunction in Heart Failure

Heart failure (HF) is the most common cause of hospitalization in cardiovascular disease with a high mortality rate. Despite novel treatment options for patients suffering from HF, morbidity and mortality rates are still high. With the advancement of medical management, survival of acute coronary disease and cardiac ischemia has been improved. However, in myocardial infarction, prognosis is still poor, as HF with preserved ejection fraction (HFrEF) has a 65% mortality rate at 5 years. While the heart was an initial focus as the failing “pumping” organ in research and treatment, neurohumoral activation and subsequently the role of a failing endothelium was recognized and investigated in the recent years. Traditionally, HF was recognized as impairment of cardiac muscle activity, known as cardiomyopathy. It has been reported that, altered perfusion in cardiac arteries, due to atherogenesis also contributes to cardiac ischemia and cardiomyopathy.

Reduction in myocardial perfusion due to impaired ventricular function are at least in part, a consequence of reduced endothelium dependent vasodilator capacity of coronary arteries. The prominent regulatory activity of the vascular endothelium in HF was discovered about two decades ago, and its assessment in different cardiovascular disorders, including HF, has been the focus of intense research [100]. On the other hand, declined peripheral vasodilation causes higher systemic and pulmonary vascular resistance, and together with stiffness of conductance arteries, leads to increased afterload. Elevated afterload further increases cardiac workload and therefore worsens the myocardial function. Altered endothelial metabolism further contributes in increasing cardiac afterload [13]. Indeed, various aspects of endothelial function are affected in heart failure, including vasomotor, hemostatic, antioxidant, and anti-inflammatory activities [85, 86]. Differences also exist in the pattern of ED depending on etiology, severity, and stability of HF in individual patients. ED also plays a central role in HF. Heart failure is also characterized by an altered redox state with overproduction of ROS. The increasing evidence suggest that the abnormal cardiac and vascular phenotypes characterizing the failing heart are caused in large part by imbalances between NO bioavailability and oxidative stress [87]. During initial stages of HF, inflammatory mediators from the myocardium, and altered local shear forces modulate gene expression, leukocyte infiltration, increased cytokine production, increased ROS generation and diminished NO bioavailability. Many diverse and often contradictory effects of NO or NO donors on myocardial function have been reported which, until relatively recently, have been difficult to make sense of. However, there is now emerging consensus that NO generally acts to fine tune and optimize cardiac pump function. Studies have shown that, suboptimal doses of NO exert small positive inotropic effects, which may serve to enhance basal cardiac function [101-104]. Augmented data suggests that NO derived both from eNOS from sarcocelmal caveolae and nNOS in the sarcoplasmic reticulum (SR) of the cardiac myocyte may modulate events like calcium influx through sarcocelmal L type channels and the release and re-uptake of calcium by SR [105,106]. At physiological doses, NO myocyte relaxation and diastolic function are observed [107-109]. The effects have been confirmed in normal human subjects studied invasively in the catheterization laboratory with intracoronary infusions of the NO donor, sodium nitroprusside, an agonist that releases NO from endothelial cells [110,111]. However, there is no direct evidence for deleterious role of NO in human heart failure. The initial speculative suggestions that excessive NO production by iNOS has acute negative inotropnic effects are almost certainly too simplistic. Treatment with NOS inhibitors had no effect on basal function either in myocardial strip preparations or isolated myocytes from end stage failing hearts [112,113]. The functional consequences of altered NOS expression and NO bioactivity in the failing human heart are only just beginning to be explored.

Clinical studies showed significant up-regulation of plasma markers of endothelial activation (e.g. E-selectin) and

Kushal Chakraborty et al.,
endothelial damage (e.g. vWF) in HF [44,85]. However, it is difficult to determine if ED is the cause or effect of the HF. Therefore, HF is regarded as thrombotic complication. As mentioned earlier, during atherosclerosis, decreased lumen of cardiac arteries leads to reduced perfusion to the heart muscle. This phenomenon is coupled with increased shear stress and impaired blood flow. This reduced perfusion either led to ischemia-reperfusion injury or coronary artery thrombosis [85]. Studies showed that ED is one of the principle mediators of ischemia-reperfusion injury and thrombosis. This explains the increased ED markers in coronary artery disease, HF and thrombosis.

3.5 Endothelial dysfunction in stroke

The global burden of neurological diseases including cerebro-vascular stroke has significantly increased, and development of new treatment modalities for cerebrovascular diseases is an urgent need. Cerebrovascular stroke can be broadly subdivided into acute ischemic stroke and hemorrhagic stroke [114]. Acute ischemic stroke is among the leading causes of death and long-term disability. Cerebrovascular stroke in small vessel has functional (lacunar stroke, cognitive impairment, gait and movement disorders) and structural (small subcortical infarct, lacunar infarct, lacunae, white matter lesions, micro bleeds) consequences. In the past few decades the immense development of neuro-radiological methods enabled better imaging of cerebral blood vessels. From the clinical point of view, it is very important to identify the location of vascular lesion. However, the treatment strategies do not depend on the location of vascular impairment. It is now well recognized that ED represents a systemic syndrome involving multiple vascular beds, including the cerebral vasculature [115]. Endothelial function is not uniform throughout the arterial system. It differs between organs and potentially also between different vascular beds within the same organ. Cerebral endothelium is probably one of the most specific types since it is the crucial element of the well-known blood-brain barrier (BBB). The BBB is a term used to describe the unique properties of the microvasculature of the central nervous system that protects the brain from harmful agents and pathogens [116]. CNS vessels are continuous non-fenestrated vessels, but also contain a series of additional properties that allow them to tightly regulate the movement of molecules, ions, and cells between the blood and the CNS. This heavily restricting barrier capacity allows BBB to tightly regulate CNS homeostasis, which is critical to allow for proper neuronal function, as well as protect the CNS from toxins, pathogens, inflammation, injury, and disease. The cell-to-cell interaction with astrocytes, microglia and neurons mainly play an important role for maintenance of BBB controlled by endothelial cells and pericytes [117]. However, the integrity of BBB is primarily disrupted due to decrease in endothelial cell –cell junction proteins and the detachment of pericytes from the endothelial membrane in homogranie condition [118]. Cerebral autoregulation maintains constant blood flow (CBF) through the brain in spite of changing mean arterial pressure. Autoregulation of cerebral blood flow consists of mechano-and chemoregulation. The serum level of carbon dioxide (CO₂) is directly controlled by the chemo-regulation independent of changes in mean arterial pressure [119,120]. However, mechano-regulation depends on transmural pressure gradient and endothelial vasodilatation.

As mentioned in previous section, strokes could be divided in two types: ischemic and hemorrhagic. In both, nitric oxide (NO) plays an important role where inducible NOS (iNOS) and neuronal NOS (nNOS) plays the role of neurotoxic agent and endothelial NOS (eNOS) plays the neuroprotective role in acute ischemic stroke [121]. NO thus produced by iNOS and nNOS exerts its neurotoxic effects by producing nitrates and releasing free radicals which eventually damage the mitochondria and genetic materials [122-125]. On the other hand, NO produced by eNOS exerts the neuroprotective effects through the regulation of vascular bed and peripheral nerve tissue [126,127]. It has been reported that, the concentration and distribution of NO in brain tissue is altered significantly after cerebral ischemia [121]. The neuroprotective role of NO in middle cerebral artery occlusion (MCAO) model shows that NO mediates the neurovascular protection through the inhibition of serine racemases [128]. The integrity of BBB could also be achieved by regulating NO/caveolin1/MMP pathway, while reduction in mRNA and protein level of iNOS and nNOS would also provide neuroprotection [129,130]. The neurotoxic effects of NO in MCAO exhibits its role by increasing infarct size and cerebral vascular injury [131] and activation of iNOS induced cell apoptosis in a rat model of cerebral ischemia-reperfusion injury [132,133]. NO and peroxides cause microvascular dysfunction and poor prognosis [134]. Hence, NO plays a dual role in hemorrhagic and acute ischemic stroke.

4. Role of Inflammasomes in endothelial dysfunction

Ample research has showed reactive species-mediated activation of inflammasomes (NLRP3), in sterile inflammatory conditions. Inflammasomes are multi-protein platforms, with a molecular mass of at least 700 kD [135] controlling the activation of caspase-1 and the cleavage of pro-IL-1β, enabling the release of the active mature 17 kD cytokine [136,137]. Caspases are responsible for crucial aspects of inflammation and cell death and can be broadly divided into two classes based on their substrate specificity pro-apoptotic/inflammatory (Figure 3) [138]. Inflammasome complexes assemble upon activation by an appropriate stimulus, leading to the multimerization of the adaptor molecule Adaptor Protein apoptosis-associated speck-like protein containing CARD (ASC) (Figure III). In
ischemia/reperfusion (I/R), release of ATP and/or mitochondrial DNA following mitochondrial permeability transition pore opening and/or rupture of mitochondrial membranes serve as strong danger signals that initiate sterile inflammation [139,140]. Reactive species production by mitochondria also induces detachment of thioredoxin from the potent NLRP3 activator TXNIP in microvascular endothelial cells [141,142]. Postischemic RS production, NLRP3 activation, TXNIP/NLRP3 signaling reduce postischemic cytokine production, neutrophil infiltration, dysfunctional endothelial barrier and cell death [143,144]. In postischemic tissues, NLRP3 forms an inflammasome composed of apoptosis-associated Spec-like protein containing a caspase activation and recruitment (ASC), which recruits and activates caspase-1(Figure 3) [145].

Mounting evidence indicates that inflammation and immune responses play an important role in the overall pathogenesis of ischemic stroke by activating various cascades of damage. Several reports show that ischemic stroke increases the expression and activation of the NLRP3 inflammasome in the neurons and glial cells [146-148]. Several mechanisms trigger NLRP3 inflammasome during cerebral ischemia, acidosis, increased ROS formation, cathepsin release, oxidized mitochondrial DNA, intracellular Ca$^{2+}$ accumulation, cell swelling, and protein kinase R (PKR) activation [149-155]. Recent studies have indicated that NO enhances the removal of the dysfunctional mitochondria and prevents assembly of the inflammasome, which leads to downregulation of the NLRP3 inflammasome and NO in myeloid cells of the mice and humans; inhibits the activation of the NLRP3 inflammasome; and consequently prevents ASC pyroptosome formation, caspase-1 activation and IL-1β secretion (Figure 3) [156-158]. In conclusion, physiological functions of NO encompass reduction of inflammatory responses and hence plays an important role in neuroprotection after stroke.

5. Endothelial dysfunction – role in preeclampsia
Preeclampsia, which is a hypertensive pregnancy disorder affects around 1-5% pregnant women and is characterized by hypertension, proteinuria, maternal organ dysfunction and uteroplacental dysfunction (Figure 4) [159,160]. Preeclampsia is a major cause of maternal and fetal morbidity and mortality, affects the health of the mother in the years directly following preeclampsia [161]. Women with a history of preeclampsia have a 2.2 times higher risk of developing ischemic heart disease [161]. In preeclampsia, ED is characterized by oxidative stress, angiogenic and vasodilatory imbalance which could be paired with endoplasmic reticulum stress and endothelial cell apoptosis [162] and reactive oxygen species raises the risk for CVD for example hypertension, hypercholesterolemia and diabetes [163,164]. In case of endothelial dysfunction, reactive oxygen species stimulate inflammation via the NF-kB pathway and activation of the macrophages in the plaque [164]. Reactive oxygen species induces the activation of proteases and matrix metalloproteinases (MMP), degrades basement membrane which in turn get involved in plaque

Figure 3: Role of reactive oxygen species on the activation of inflammasome, activation caspase-1, leading to leading to inflammation/apoptosis.

Figure 4: Role of endothelial dysfunction and hypertension in maternal and fetal morbidity during preeclampsia.
erosion [165,166]. Nitric oxide concentration has been shown to have variable results ranging from decreased or increased or even unchanged levels in terms of NO metabolites in preeclampsia, [167-172]. Although the whole body NO may not change in PE, a reduction in endothelial NO signaling, vascular relaxation in PE and NO bioavailability could be expected [173]. Attempts to assess eNOS activity in PE led to the conclusion that it is unknown whether eNOS deficiency plays a casual role there. In the murine model, chronic NOS inhibition reversed systemic vasodilation and glomerular hyperfiltration in pregnancy, which suggested its role for endothelial damage and decreased NO in the pathogenesis of preeclampsia (Figure 4) [174]. Data from PE women is quite limited and without consensus on eNOS expression, as higher, lower and unchanged levels of mRNA or enzyme have been reported [175,176].

6. Conclusion
In this review we have tried to focus on the role of ED in CVDs and cardiovascular morbidity where sterile inflammatory responses pose a credible threat, owing to considerable attention.

Patients with chronic inflammatory and / or sterile inflammatory diseases are at high risk for cardiovascular morbidity and mortality. In many inflammatory diseases, this heightened risk of CVDs are reflected in early ED, even in the absence of any other detectable diseases. Several others mechanisms i.e. auto-antibodies, oxidative stress and interactions with traditional risk factors like dyslipidemia and insulin resistance might also be involved. Current literature search provides an insight into the cross-talks between oxidative stress, ED and inflammasomes. Therefore, further research is required to delineate the importance of these processes. The current approaches to diminish cardiovascular morbidity and mortality are focused on controlling traditional modifiable cardiovascular risk factors and reduction of disease risk. Therefore, the precise mechanisms leading to development of CVDs due to inflammation/or sterile inflammation need to be explored. These studies might help to identify unique therapeutic targets to combat these diseases.

The endothelium therefore represents an integrator of vascular risk and the study of its dysfunction may help elucidate mechanisms driving accelerated CVDs in future which could help to develop therapeutic targets for control of CVDs.

Acknowledgement
This work was supported by grants from the Grand Challenges Canada, Canada, to G.A.K. Madiha Khan, The Heritage School, Kolkata is thanked for English languages correction.

Declaration of conflict of interest: None

References

